
ICT365

Software Development Frameworks

Dr Afaq Shah

Inheritance

In this Topic

• Inheritance (subclassing, interfaces, virtual
methods, method overriding)

• Abstract classes and interfaces.

• Define new classes by extending existing classes.

• Access specifiers control the access of members of
the base class by its derived classes.

• Constructor invocation when instantiating a
derived class.

• Virtual methods and method overriding.

• Automatic type conversion.

• Dynamic method dispatch.

• System.Object class. 3

Inheritance

Assume we already have a class named Person
(name, address, age, gender, etc)

We need to design a new class that models a
student.

Question:

Should we design the Student class from scratch or
design the Student class based on Person class to
avoid re-inventing the wheel?

4

Inheritance (cont’d)

Like any OO language, C# supports inheritance

Instead of writing a new Student class from
scratch, extend the existing Person class

Extended class - the derived class, or subclass,
or child class,

The original class - base class, or superclass,
or parent class.

5

Inheritance (cont’d)

In C#, every class is either a direct or an
indirect descendant of System.Object class.

The FCL forms a tree of classes rooted at
System.Object.

The derived class inherits all of the base class
attributes

Inheritance

Inheritance
relationships (class
diagram) - arrow
pointing to the
parent class.

Inheritance should
create an is-a
relationship

Animal

Bird

Examples: Base Classes and Derived
Classes

Base c lass Derived c lasses

Student GraduateStudent

UndergraduateStudent

Shape Circle

Triangle

Rectangle

Loan CarLoan

HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount

SavingsAccount

Declaring a Derived Class

• Define a new class DerivedClass which
extends BaseClass

class BaseClass

{

// class contents

}

class DerivedClass : BaseClass

{

// class contents

}

Example1

Assume an existing class Person:
class Person

{

public string Name;

public string Address;

public void Show()

{

Console.WriteLine(“Name: {0},

address: {1}”, Name, Address);

}

}

10

Example 1

Create a new class to model a student

No need to do it from scratch.

Efficient way - extend the class Person:

class Student : Person

// extending Person class

{

public int StudentNo;

}

The new class Student inherits everything from Person
class

New member StudentNo that Person does not have.

11

Example 1

Student s = new Student();

s.Name = “Joe”; // from base class

s.Address = “2 South St”; // from base class

s.StudentNo = 12345; // from the derived class

s.Show(); // from base class

12

Class inheritance

//The Mammal class can be instantiated.

public class Mammal

{

public int NumberOfVertebrae{ get; set;}

public float WarmBloodTemperature{ get; set;}

public void GrowHair(){ /* something here */ }

public void ProduceMilk(){ /* something here */ }

}

// Human inherits from Mammal a lot of “biological”

// functions.

public class Human : Mammal

{

/* human attributes, functionality here */

//Human constructor calls Mammal() first

public Human()

{

super();

/* some code goes here */

}

}

Overriding Methods

• A child class can override the definition of an
inherited method

• The new method

- the same signature as the parent's method,

- a different implementation.

• The type of the object executing the method
determines which version of the method is
invoked.

Controlling Inheritance

• A child class inherits the methods and

• private Variables and methods are not
accessible in the child class

• public Variables and methods are accessible
(but violate our goal of encapsulation)

• Third visibility modifier: protected?

+ public

- private

protected

The protected Modifier

Variables and methods
declared with protected
visibility in a parent
class are only
accessible by a child
class or any class
derived from that class

Book
pages : int

+ GetNumberOfPages() : void

Dictionary
- definition : int

+ PrintDefinitionMessage() : void

Single Inheritance

• Some languages, e.g., C++, allow Multiple
inheritance.

• C# and Java support single inheritance

- a derived class can have only one parent class.

Class Hierarchies

Animal

Reptile Bird Mammal

Snake Lizard BatHorseParrot

Class Hierarchies

Shape

TwoDimensionalShape ThreeDimensionalShape

Sphere Cube CylinderTriangleSquareCircle

Polymorphism via Inheritance

StaffMember

name : string

address : string

phone : string

+ ToString() : string

+ Pay() : double

Volunteer

+ Pay() : double

Employee

socialSecurityNumber : String

payRate : double

+ ToString() : string

+ Pay() : double

Executive

- bonus : double

+ AwardBonus(execBonus : double) : void

+ Pay() : double

Hourly

- hoursWorked : int

+ AddHours(moreHours : int) : void

+ ToString() : string

+ Pay() : double

Dynamic Binding

• Suppose the Holiday class has a method called
Celebrate, and the SummerHoliday class

redefines it (overrides it).

• Now consider the following invocation:

day.Celebrate();

• If day refers to a Holiday object, it invokes the
Holiday version of Celebrate; if it refers to a
SummerHoliday object, it invokes the
SummerHoliday version

Holiday day;

day = new Holiday();

…

day = new SummerHoliday();

Overriding Methods

• The keywords virtual, override and new

• If a base class method is going to be overridden
it should be declared virtual.

• A derived class would then indicate that it
indeed does override the method with the
override keyword.

Overriding Methods

• If a derived class wishes to hide a method in the
parent class, it will use the new keyword.

• This should be avoided.

Overloading vs. Overriding

Overloading deals with
multiple methods in the
same class with the
same name but different
signatures

Overloading lets you
define a similar
operation in different
ways for different data

Example:

int foo(string[] bar);

int foo(int bar1, float a);

Overriding deals with two
methods, one in a parent
class and one in a child
class, that have the same
signature

Overriding lets you define a
similar operation in
different ways for
different object types

Example:

class Base {

public virtual int foo() {} }

class Derived {

public override int foo() {}}

The object Class

In C#, every class is derived from the root class:

System.Object

When you define a new class, if it is not an
extension of an existing class, it is implicitly an
extension of System.Object class.

Hence every class shares the attributes of
System.Object class.

25

The object Class

Class object has a number of useful methods,
including

pubic virtual string ToString()

public virtual Equals(object ob)

public Type GetType()

We will explain virtual later in this Topic

26

The System.Object Class

• All classes in C# are derived from the Object class

• The Object class - root of all class hierarchies.

• The Object class defines methods that will be shared by all

objects in C#, e.g.,

ToString: converts an object to a string representation

Equals: checks if two objects are the same

GetType: returns the type of object

• A class can override a method defined in Object to have a
different behavior

What are Accessible?

Which members of the base class are directly
accessible in the derived class?

Access specifiers of those members:

public members - accessible in the derived classes

private members - not directly accessible in the
derived classes

protected members - directly accessible in the
derived classes

28

Example 2

class A

{

public int x;

protected int y;

private int z;

// default constructor

public A() { x = 10; y = 11; z = 12; }

public void M1()

{ Console.WriteLine("A.M1"); }

protected void M2()

{ Console.WriteLine("A.M2"); }

private void M3()

{ Console.WriteLine("A.M3"); }

} 29

Example 2

class B : A // (B is a derived class of base

class A)

{

public void M()

{

Console.WriteLine("B.M");

Console.WriteLine("x = {0}", x);

Console.WriteLine("y = {0}", y);

// Console.WriteLine("z = {0}", z);

}

}

public member x is
accessible in subclass

protected member y is also
accessible in subclass

private member z is not
accessible in subclass, so

this is a mistake!

30

Example 2

B b = new B();

b.x = 200; // x is declared public in class A and is inherited

//from A by class so it is accessible anywhere

//b.y = 300; // y is declared protected in class A and is

//inherited from A by class B but it is not accessible

// in any class that is not derived from class A

b.M(); // M is declared public in class B so it is

// accessible anywhere

b.M1(); // M1 is declared public in class A and is inherited by

//class B, so it is accessible anywhere

// b.M2(); // M2 is declared protected in class A and is

// inherited by class B but it is not accessible in any class

// that is not derived from class A

What about b.M3()?

31

Overriding Methods

In the previous example:

s.Show();

only prints the name and address of the Student
object s.

It cannot print StudentNo

32

Overriding Methods

Declare Show method as a virtual method in the
base class.

In the derived class, the method is re-defined.
The keyword “override” - in the method
declaration.

In the derived class, we can use reserved word
“base” to access members of the base class.

Another form of polymorphism

Example 3

Overriding the virtual method in the derived class.

in the base class Person:
public virtual void Show()

{

Console.WriteLine(“Name: {0}, address: {1}”,

name, address);

}

in the derived class Student:
public override void Show()

{

base.Show();

// invoke the method in the base class

Console.WriteLine(“Student No.: {0}”, studentNo);

}

34

Which Constructors?

Which constructor - the one in the derived class, or the
one in the base class, or both?

In C#, both constructors will be used.

For example, if class A is derived from System.Object,
class B is derived from class A, and class C is derived
class B, then when instantiating class C, the constructor
from class A is executed, followed by that of class B,
followed by that of class C.

35

Example 4

class Person

{

string myName; // note this is private

string myAddress;

public Person(string name, string address) {

// constructor

myName=name; myAddress=address;

}

public virtual void Show()

{

Console.WriteLine(“Name: {0}, address: {1}”,

myName, myAddress);

}

}

36

Example 4

class Student: Person

{

int myStudentNo;

public Student(string name, string address, int studentNo)

: base(name, address) // see comments in the next slide

{

myStudentNo = studentNo;

}

public override void Show()

{

base.Show();

// invoke the method in the base class

Console.WriteLine(“Student No.: {0}”, myStudentNo);

}

}

37

Example 4

When you instantiate class Student, such as in

Student s = new Student(“John”, “South St”, 1234);

the matching constructor in Student is invoked.

Note that you cannot call a constructor like you call a normal method.
That is why a special syntax is needed.

Even if you did not explicitly invoke the base constructor using

: base(. . . .)

in the constructor, the base constructor is still invoked first.

38

Type Conversion

A “narrower” type can usually be automatically
converted to a more general type, for example:

int x = 10;

double y = x;

// “int” is narrower than “double” in the sense

// every int value has a corresponding double value

But a more general type cannot be automatically
converted to a narrower type:

double x = 10.5;

int y = x;

// error, as double is more general than int

39

Type Conversion

a subclass (more specific) -> ancestry classes (more
general).

For example:
Person p = new Person(“Joe”, “Murdoch Dr”);

Student s = new Student(“Tim”, “Leach Hwy”, 1234);

p = s;

The above assignment is ok, because Student type is
narrower than Person type.

Note that after the assignment, p is still of type
Person, but it is pointing to an object of Student
type! See the implication later.

40

Type Conversion

The type of b is B. It can be converted to type A:

B b = new B();

A a = b;

// variable b’s type is narrower than that of variable a

But not:

A a = new A();

B b = a; // this is wrong!

41

Example 5

class Program

{

public static void Main(string[] args)

{

B b = new B();

A a = b;

// ok as b’s type B is derived from a’s type A.

a.x = 400; // ok, as x is from class A

a.M1(); // ok, as M1 is from class A

// a.M();

// oops, as M is from B, it is not available in class A.

// note that a’s type is now A, not B, even though

// the object it is pointing to is of type B

}

}

42

Example 6

class A

{

public virtual void M()

{

Console.WriteLine("I am in class A");

}

}

class B: A

{

public override void M()

{

Console.WriteLine("I am in class B");

}

}

43

Dynamic Method Dispatch

In the following code
B b = new B();

A a = b;

a.M();

Which method is invoked with a.M() ?
is it the virtual method defined in class A, or
is it the overriding method defined in class B?

44

Example 6 (try this code)

class Program

{

public static void Main(string[] args)

{

A a = new A();

a.M();

// calling the virtual method M from class A

B b = new B();

b.M();

// calling the overriding method M from class B

a = b;

// ok, b’s type is narrower than that of a

a.M();

// which method are we calling now, the virtual

// method from A or overriding method in B?

// perform a test to find it out yourself!

}

} 45

Example 6 (Explanation)

If you think variable a is of type A, then you may think that a.M()

should be the virtual method defined in class A.

However if you think that the object pointed to by a is actually of type

B, then a.M() should invoke the overriding method defined in class

B.

The compiler cannot decide at compile time which method should be

invoked, the virtual method in the base class A, or the overriding

method in the derived class B.

This is because at compile time, the compiler does not know the type

of the object pointed to by the reference stored in variable a.

The decision is made at runtime. The runtime system resolves the

method based on the type of the object, rather than the type of the

object reference.

Hence, in the above case, the overriding method in class B is called.

This is known as dynamic method invocation.

Abstract Classes

An abstract class is incomplete and is intended to be used
only as a base class.

An abstract class may contain fields and methods.

When a class is derived from an abstract class -> must
include actual implementations.

An abstract class -> provides a common interface among
several different classes.

47

Example 7

abstract class A

{

public abstract void M(); // note there

is no method body.

}

class B: A // B is a subclass of A

{

public override void M() // class B must

implement this method!

{

// actual implementation of M

.

}

} 48

Abstract class – contains
abstract method

abstract class Motorcycle

{

// Anyone can call this.

public void StartEngine()

{/* Method statements here */ }

// Only derived classes can call this.

protected void AddGas(int gallons)

{ /* Method statements here */ }

// Derived classes can override the base class implementation.

public virtual int Drive(int miles, int speed)

{ /* Method statements here */ return 1; }

// Derived classes must implement this.

public abstract double GetTopSpeed();

}

https://msdn.microsoft.com/en-us/library/ms173114.aspx

class TestMotorcycle : Motorcycle

{

public override double GetTopSpeed()

{

return 108.4;

}

static void Main()

{

TestMotorcycle moto = new TestMotorcycle();

moto.StartEngine();

moto.AddGas(15);

moto.Drive(5, 20);

double speed = moto.GetTopSpeed();

Console.WriteLine("My top speed is {0}", speed);

}

}

Abstract Class Summary

• Defines the interface for a hierarchy of classes.

• Abstract Class lets subclasses redefine the
implementation of an interface.

• This means that you cannot
directly instantiate an abstract class.

http://www.agile-code.com/blog/difference-between-interfaces-and-abstract-classes-in-microsoft-net/

//The Human class cannot be instantiated.

public abstract class Human

{

public abstract void Talk();

}

//while Person inherits from Human

//it has to implement the Talk method.

public class Person : Human

{

//note the override keyword

public override void Talk()

{

/* some code goes here */

}

}

• A class may inherit only from only
one abstract class

• Cannot be instantiated directly

• An abstract class may contain
abstract methods and accessors.

• Methods marked as abstract cannot
contain any code.

• A non-abstract class derived from
an abstract class must include
actual implementations of all
inherited abstract methods and
accessors otherwise a compiler
error will occur.

• An abstract method is implicitly a
virtual method.

• Abstract properties behave like
abstract methods.

http://www.agile-code.com/blog/difference-between-interfaces-and-abstract-classes-in-microsoft-net/

Interface

An interface defines a contract.

Unlike abstract classes, interfaces can contain methods
prototypes and properties,

- no fields (which require storage),

- no method implementation.

A class can implement multiple interfaces

53

Example 8

interface IComboBox

// by convention, we start an interface name with I

{

void Paint();

void SetText(string text);

void SetItems(string[] items);

}

public class EditBox: IComboBox

{

public void Paint() {...}

public void SetText(string text){ ... };

public void SetItems(string[] items){ ... };

}

54

Interfaces - Summary

• In its most common form, an interface is a
group of related methods with empty
bodies, in other words, interfaces describe
a group of related functionalities that can
belong to any class or struct.

• Some of the characteristics of an Interface:

• An interface cannot be instantiated directly.

• A class or struct can implement more than
one interface.

• Interfaces can contain events, indexers,
methods, and properties.

• An interface itself can inherit from multiple
interfaces.

• The interface itself contains no
implementations but only the public
members signature

public interface IHuman

{

void Talk();

}

public class Person : IHuman

{

public void Talk()

{

throw new

NotImplementedException();

}

}

http://www.agile-code.com/blog/difference-between-interfaces-and-abstract-classes-in-microsoft-net/

Interface Example - Passing Listbox

As an Exercise you could use a ListBox control to
display all clients that are currently stored in
your client database.

Assume the ListBox object is named listbox, the
event handler for clicking “List All Clients” button
would call a method from ClientDB object to get
a list of client names for display. Let’s assume
the method is named ListAllClients.

The issue then is how do we get the list of client
names from the ClientDB object?

There are at least three ways to do it.

56

Interface Example - Passing Listbox

Method 1:

In ListAllCLients method from ClientDB, we
create a temporary array, and retrieve all client
names from the database and store these
names in the array. Then we return the array
to the event handler.

downside: a lot of overhead associated with
creating and destroying the temporary array.
In addition, for each name, you need to copy it
to that array and then copy it from the array to
the list box for display. This is additional
overhead.

57

Interface Example - Passing Listbox

Method 2:

From the event handler, pass the ListBox object to
the method:

clientDB.ListAllClients (listbox);

For this to happen, we can declare the method as:

public void ListAllClient
(System.Windows.Form.ListBox listbox)

Strength: avoid the overheads of Method 1.

Weakness: the method ListAllClients is limited to
ListBox. It cannot be used for other list-like objects
such as ListView objects. Hence we need to make
the method more generic.

58

Interface Example - Passing Listbox

Method 3:

Since what ListAllClients method really needs is the
collection where the names can be added to. This
collection is the property “Items” from a ListBox
which is of type ObjectCollection. We could use this
type to declare the formal parameter, however this
type is defined in ListBox class and can only be used
for the Items from ListBox.Items.

We noticed that ObjectCollection is actually an
implementation of the interface IList and IList is
fairly general and many GUI controls implement this
interface. In terms of type hierarchy, IList is much
more general and ObjectCollection is more narrow,
hence the type ObjectCollection is compatible to type
IList . 59

Interface Example - Passing Listbox

For the above reason, we can use the third
method: declare the formal parameter with IList:

public void ListAllClients
(System.Collection.IList list)

and in the event handler we pass Items from the
listbox to the method:

ListAllClients (listbox.Items);

The method will then retrieve all names from the
database and add each of the names to the “list”
using method list.Add(name).

60

C# Reference

• Inheritance (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173149.aspx

• Abstract and Sealed Classes and Class
Members (C# Programming Guide)

• https://msdn.microsoft.com/en-
au/library/ms173150.aspx

• Interfaces (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173156.aspx

https://msdn.microsoft.com/en-us/library/ms173149.aspx
https://msdn.microsoft.com/en-au/library/ms173150.aspx
https://msdn.microsoft.com/en-us/library/ms173156.aspx

C# Reference

• Great resource for C#

• https://msdn.microsoft.com/en-
us/library/618ayhy6.aspx

• E.g. C# Programming Guide

• https://msdn.microsoft.com/en-
us/library/67ef8sbd.aspx

• E.g. Interfaces (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173156.aspx

https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://msdn.microsoft.com/en-us/library/ms173156.aspx

• Classes and Structs (C# Programming
Guide)

• https://msdn.microsoft.com/en-
us/library/ms173109.aspx

• Inheritance (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173149.aspx

https://msdn.microsoft.com/en-us/library/ms173109.aspx
https://msdn.microsoft.com/en-us/library/ms173149.aspx

• Polymorphism (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173152.aspx

• Abstract and Sealed Classes and Class
Members (C# Programming Guide)

• https://msdn.microsoft.com/en-
au/library/ms173150.aspx

• Properties (C# Programming Guide)

• https://msdn.microsoft.com/en-
AU/library/x9fsa0sw.aspx

https://msdn.microsoft.com/en-us/library/ms173152.aspx
https://msdn.microsoft.com/en-au/library/ms173150.aspx
https://msdn.microsoft.com/en-AU/library/x9fsa0sw.aspx

Reading/ reference

You should be okay with
Chapters 1-5

Specifically, review:

Chapter 6. Building Your Own
Types with Object-Oriented
Programming

Chapter 7. Implementing
Interfaces and Inheriting
Classes

Reading/ reference

Nothing this week, but take a
look at the book anyway, its
really good..

We will be referring to it later.

Reading/ reference

You could skim through these:

Chapter: CLASSES AND
GENERICS

Chapter: OBJECT-ORIENTED
PROGRAMMING IN C#

Reading/ reference

We will be covering
Interfaces more later on,
but if you want to look
at this:

Chapter 13. Interfaces

Few extra slides for you to read

Recommendations for Abstract
Classes vs. Interfaces

• The choice of whether to design your functionality as an interface or
an abstract class (a MustInherit class in Visual Basic) can sometimes
be a difficult one. An abstract class is a class that cannot be
instantiated, but must be inherited from. An abstract class may be
fully implemented, but is more usually partially implemented or not
implemented at all, thereby encapsulating common functionality for
inherited classes.

• An interface, by contrast, is a totally abstract set of members that can
be thought of as defining a contract for conduct. The implementation
of an interface is left completely to the developer.

• Both interfaces and abstract classes are useful for component
interaction. If a method requires an interface as an argument, then
any object that implements that interface can be used in the
argument.

https://msdn.microsoft.com/en-AU/library/scsyfw1d(v=vs.71).aspx

• This method could accept any object that implemented IWidget as the
widget argument, even though the implementations of IWidget might
be quite different. Abstract classes also allow for this kind of
polymorphism, but with a few caveats:

• Classes may inherit from only one base class, so if you want to use
abstract classes to provide polymorphism to a group of classes, they
must all inherit from that class.

• Abstract classes may also provide members that have already been
implemented. Therefore, you can ensure a certain amount of identical
functionality with an abstract class, but cannot with an interface.

• https://msdn.microsoft.com/en-AU/library/scsyfw1d(v=vs.71).aspx

' Visual Basic

Public Sub Spin (ByVal widget As IWidget)

End Sub

// C#

public void Spin (IWidget widget)

{}

Interface or abstract class..

• If you anticipate creating multiple versions of your component, create
an abstract class. Abstract classes provide a simple and easy way to
version your components. By updating the base class, all inheriting
classes are automatically updated with the change. Interfaces, on the
other hand, cannot be changed once created. If a new version of an
interface is required, you must create a whole new interface.

• If the functionality you are creating will be useful across a wide range
of disparate objects, use an interface. Abstract classes should be used
primarily for objects that are closely related, whereas interfaces are
best suited for providing common functionality to unrelated classes.

• If you are designing small, concise bits of functionality, use interfaces.
If you are designing large functional units, use an abstract class.

• If you want to provide common, implemented functionality among all
implementations of your component, use an abstract class. Abstract
classes allow you to partially implement your class, whereas interfaces
contain no implementation for any members.

https://msdn.microsoft.com/en-AU/library/scsyfw1d(v=vs.71).aspx

Widening and Narrowing

Few more concepts

• Assigning an object to an ancestor reference is
considered to be a widening conversion, and
can be performed by simple assignment
Holiday day = new SummerHoliday();

• Assigning an ancestor object to a reference can
also be done, but it is considered to be a
narrowing conversion and must be done with a
cast:
SummerHoliday summerDay= new SummerHoliday();

Holiday day = summerDay;

SummerHoliday summerDay = (SummerHoliday)day;

Widening and Narrowing

• Widening conversions are most common.

Used in polymorphism.

• Note: Do not be confused with the term
widening or narrowing and memory. Many
books use short to long as a widening
conversion. A long just happens to take-up
more memory in this case.

• More accurately, think in terms of sets:

The set of animals is greater than the set of parrots.

The set of whole numbers between 0-65535 (ushort) is
greater (wider) than those from 0-255 (byte).

Type Unification

• Everything in C# inherits from object

Similar to Java except includes value types.

Value types are still light-weight and handled
specially by the CLI/CLR.

This provides a single base type for all instances
of all types.

Called Type Unification

